Artificial Neural Network for Anomaly Intrusion Detection

نویسنده

  • Lixin Wang
چکیده

Since the advent of intrusion detection system (IDS) in the early 1980s, IDS has been suffering many problems until now. The detection of novel attacks and lower rate of false alarms must be realized in successful IDS. Misuse detection compares data against predefined patterns usually collected by an IDS signature database. It is hard for misuse detection to detect even slightly variation of known attacks. Anomaly detection finds attacks by using deviations from the normal behavior. Although anomaly detection can detect novel attacks, it cannot identify specific type of attack and entail the high rates of false alarms. In this paper, we point out the weakness of the previous methods such as statistical analysis and rulebased system in intrusion detection. In order to detect unknown attacks and avoid malicious hiding intrusion, artificial neural network for anomaly detection was introduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing

Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...

متن کامل

Artificial Neural Network Approaches to Intrusion Detection: A Review

Intrusion detection systems are the foremost tools for providing safety in computer and network system. There are many limitations in traditional IDSs like time consuming statistical analysis, regular updating, non adaptive, accuracy and flexibility. It is an Artificial Neural Network that supports an ideal specification of an Intrusion Detection System and is a solution to the problems of trad...

متن کامل

Anomaly-based Web Attack Detection: The Application of Deep Neural Network Seq2Seq With Attention Mechanism

Today, the use of the Internet and Internet sites has been an integrated part of the people’s lives, and most activities and important data are in the Internet websites. Thus, attempts to intrude into these websites have grown exponentially. Intrusion detection systems (IDS) of web attacks are an approach to protect users. But, these systems are suffering from such drawbacks as low accuracy in ...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

Flow-based Anomaly Intrusion Detection System Using Neural Network

tational power to analyze only the basic characteristics of network flow, so as to Intrusion Detection systems (KBIDES) classify the data vectors based on a carefully be using spiking (biologically inspired) Artificial Neural Networks (SANN). neural network is applied to intrusion detection system model in this paper. Experimental improved PSO-BP neural network algorithm flow.

متن کامل

Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003